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On a Kinetics of a Multimolecular Chemical 
Reaction 
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Abstract— The construction of a probabilistic model of a multimolecular chemical reaction of several reagents is reduced to the 
construction of a probabilistic model of a unimolecular chemical reaction. New explicit expressions are obtained for product trajectories, 
reaction speed and also for mathematical expectations and dispersions of these values. 

Index Terms— Kinetics of chemical reaction, reagent, product, probabilistic model, reaction speed.   
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1 INTRODUCTION                                                                     
HE kinetics of chemical reactions (chemical kinetics) stud-
ies the reaction speed. The mathematical theory of chemi-
cal kinetics is concerned with the construction of deter-

ministic and probabilistic models which describe chemical 
processes. These models are used when investigating chemical 
kinetics. Deterministic models are constructed using differen-
tial (integral) equations, while a chemical process is described 
by means of real continuous functions of time [1]. In probabil-
istic models of chemical kinetics the number of reagent (prod-
uct) molecules is a random variable. In that case, the problem 
consists in finding distributions and numerical characteristics 
of this random variable [2], [3], [4]. It should be said that in the 
construction of probabilistic models of chemical and also bio-
logical processes an essential role is played by methods of 
random processes, especially by methods of Markov process-
es. In particular, models of population growth, epidemies, 
gene frequency, unimolecular, bimolecular, monomolecular 
chain reactions and other models [2] were constructed. 

In the present paper, for one class of chemical reactions the 
construction of the probabilistic model of a multimolecular 
chemical reaction of several reagents is reduced to the con-
struction of the probabilistic model of a unimolecular chemical 
reaction for the reagent with minimal concentration. Such ap-
proach we call the method of the minimum. Explicit expres-
sions are obtained for the product trajectories and the reaction 
speed, and also for mathematical expectations and dispersions 
of these values. 

Let us briefly consider the deterministic models of 
unimolecular and bimolecular reactions. Suppose we consider 
the reaction ka x→ , where 0k >  is the reaction speed con-
stant. Denote the concentrations of the reagent a  and the 
product x  at a moment of time 0t ≥  by ( )a t  and ( )x t . It is 
assumed that ( )0 0a > , ( )0 0x =  and ( ) ( ) ( )0a x t a t− = . Ac-
cording to the fundamental axiom of the deterministic theory 
of chemical kinetics, the reaction speed (product concentration 

speed) is proportional to the acting mass, which can be written 
by means of the equation 

( ) ( ) ( ) ( )( )0x
dx t

V t k a x t
dt

= = − .  (1) 

 
From this equation we easily obtain by integration over the 
time interval [ ]0, t  the following relations 

( ) ( )( )0 1 ktx t a e−= − ,   (2) 
( ) ( )0 kta t a e−= .    (3) 

Using these relations, for any moment of time 0t ≥  we easily 
obtain explicit analytic expressions for the speeds of transfor-
mation of the reagent a  and formation of the product x . In-
deed, we obtain 

( ) ( ) ( )0 kt
x

dx t
V t ka e

dt
−= = ,  (4) 

( ) ( ) ( )0 kt
a

da t
V t ka e

dt
−= = − ,  (5) 

whence for the initial speeds we have ( ) ( )0 0aV ka= −  and 
( ) ( )0 0xV ka= + . 
Let us now consider the class of bimolecular reactions of 

the form 1 2
ka a x+ →  when the collision of a pair of mole-

cules of two reagents results in the formation of one molecule 
of the product. Denote the concentrations of the reagents and 
the product at a moment of time 0t ≥  by ( )1a t , ( )2a t  and 
( )x t . It is assumed that ( )1 0 0a > , ( )2 0 0a >  and ( )0 0x = . In 

that case, an analogue of equation (1) has the form 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 20 0x
dx t

V t k a x t a x t
dt

 = = − −  , (6) 

whence by integration over the time interval [ ]0, t  it readily 
follows that 

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )( ) ( )

2 1

2 1

0 0

1 2 0 0
2 1

10 0
0 0

kt a a

kt a a

ex t a a
a e a

−

−

−
=

−
. (7) 

From this we can easily obtain the reaction speed expression 
for any moment of time 0t ≥ . 

It should be said that if the concentrations of the reagents 
1a  and 2a  are equal, ( ) ( )1 20 0a a= , then from (7) we obtain 

an uncertainty of the form 0 0 . Moreover, in the case of three 
reagents, the problem of obtaining an explicit expression for 
the product ( )x t  from the analogue of equation (6) is a rather 
difficult mathematical problem which, in principle, cannot be 
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solved analytically. 

2 RESULTS AND THE DISCUSSION 
We will now try to construct the probabilistic model of a 
multimolecular chemical reaction by using a different ap-
proach to finding an explicit expression of the product trajec-
tory. 

Let us consider the multimolecular chemical reaction of re-
agents 1, , na a  of the form 

1
k

na a x+ + → . 
Denote the concentrations (numbers of molecules) of these 

reagents and the product at a moment of time 0t ≥  by 
( ) ( )1 , , na t a t  and ( )x t , where ( )0 0ia > , 1, ,i n=  , and 
( )0 0x = . 

Also denote 
( ) ( ) ( )

( ) ( ) ( )

1 10

0 .n n

a x t a t

a x t a t

− =

− =

       (8) 

From (8) we have 

( ) ( ) ( )
1 1

0
n n

i i
i i

a nx t a t
= =

− =∑ ∑ .        (9) 

Let us rewrite relation (9) in the following form, the validi-
ty of which is easy to verify: 

( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( )( )

1

1
1

1

min 0 , , 0

0 min 0 , , 0

min , ,

n

n

i n
i

n

n a a

a n a a nx t

n a t a t
=

⋅

+ − ⋅ −

= ⋅

∑







 

( ) ( ) ( )( )1
1

min , ,
n

i n
i

a t n a t a t
=

+ − ⋅∑  ,        (10) 

where for 0t ≥ , ( ) ( )( )1min 0 , , 0na a  is a minimal value 
among the values ( )ia t , 1, ,i n= … . Also denote 

( ) ( )( ) ( )1min , , na t a t a t= , 0t ≥ . 
Note that in relation (10) the equality 

( ) ( ) ( ) ( )
1 1

0 0 0
n n

i i
i i

a n a a t n a
= =

− ⋅ = − ⋅∑ ∑        (11) 

is fulfilled for any moment of time 0t ≥ , where 
( ) ( ) ( )( )10 min 0 , , 0na a a=  . 

Indeed, we have 

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

1

1

1

0 0

0 0 .

n

i
i

n

i
i
n

i
i

a t n a t

a n x t n a x t

a n a

=

=

=

− ⋅

= − ⋅ − ⋅ −

= − ⋅

∑

∑

∑

 

Let us once more formulate our conjectures and the main 
result. 
Conjecture 1. One molecule of the product x  is formed only after 

the collision of one molecule of the reagents 1, , na a . 

Conjecture 2. Instead of the product of concentrations (acting 
masses) of the reagents 1, , na a , as the acting mass we take the 
sum of the number of molecules of the reagents 

( ) ( )1 na t a t+ + , 0t ≥ . 

Conjecture 3. We use the fundamental axiom of the deterministic 
theory of chemical kinetics, according to which the speed of prod-
uct formation is proportional to the acting mass. This is the so-
called law of acting masses. 

The main result is formulated as the following proposition. 
Proposition 1. Let Conjectures 1-3 be fulfilled. Then for a 

multimolecular chemical reaction with participation of the rea-
gents 1, , na a  the following relations are fulfilled: 

( ) ( ) ( )0a x t a t− = ,          (12) 

( ) ( ) ( ) ( )0x
dx t

V t k a x t
dt

 = = −  .         (13) 

where ( ) ( ) ( )( )10 min 0 , , 0na a a=  . 
Thus the study of the kinetics of a multimolecular reaction 

for the reagents 1, , na a  is reduced to the study of the kinet-
ics of a unimolecular reaction for the reagent 

( )1min , , na a a=  . As to relation (12) it is directly obtained by 
relations (10) and (11). 

For (11) and (12) as an illustration consider a numerical ex-
ample. Let number of reagents is 2n = , ( )1 0 8a = , ( )2 0 12a = . 
Then we have the following table. 

 

Conjecture 4. The reagents 1, , na a  are statistically independent 
and the probability of the reverse reaction 

( )1min , ,k
nx a a a→ =   is equal to zero. 

Using equation (8.6) from [2], for the probability 
( ) ( ){ } ( ), 0,1, , 0aP t P a t a a a= = =  , 

we obtain the explicit expressions for mathematical expecta-
tions and dispersions of the values ( )a t and ( )x t . 
Proposition 2. Let a reaction of the form ka x→   be considered 

( ) ( ) ( )0a x t a t− = , 0t ≥ , and Conjectures 1-4 be fulfilled. 
Then the following relations are valid: 

( )( ) ( ) ( )0 kta t a e a t−= =E ,  (14) 

( )( ) ( )( ) ( )0 1 ktx t a e x t−= − =E ,  (15) 

( )( ) ( )( ) ( ) ( )0 1kt kta t x t a e e− −= = −D D . (16) 

From (14) and (15) we see that ( ) ( )0a t a→ , 
( ) ( )0 0x t x→ =  as 0t → , while ( ) 0a t → , 
( ) ( ) ( )0x t x a→ ∞ =  as t →∞ . Using relations (14) and (15) 

we can define, at any moment of time 0t ≥ , the transfor-

TABLE 1 
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mation speeds of the reagent ( )a t  and the product ( )x t . We 
have 

( ) ( ) ( )0 kt
a

da t
V t ka e

dt
−= = − ,  (17) 

( ) ( ) ( )0 kt
x

dx t
V t ka e

dt
−= = + ,  (18) 

whence for the initial speeds at the moment of time 0t =  we 
obtain respectively ( ) ( )0 0aV ka= −  and ( ) ( )0 0xV ka= . 

Note that we were able to obtain expressions (14) and (15) 
by using the analogue of equation (1) for the values 

( ) ( )( )1min , , nk a t a t…  and ( )x t . It should also be said that 
the constructed probabilistic models (14) and (15) enable us to 
calculate dispersions (16) which are very important character-
istics for the analysis of chemical kinetics. 

For such a parameter of chemical reaction models as the 
reaction constant k , it can be estimated by the relation 

( )
( ) ( )

01 ln
0
a

k
t a x t

=
−

.  (19) 

Indeed, if there is a possibility to carry out an experiment 
and obtain empirical data, then for moments 1, , mt t  we will 
have the sample ( ) ( )( ) ( )( )1 1, , , , ,m mx k x t k x t k=  . Applying 
statistical methods, we can obtain by means of this sampling 
various point (integral) estimates of the reaction speed con-
stant k  and also perform regression analysis. 

It is of interest to note that by relations (15), (16) and (18) 
we can calculate the mathematical expectation and dispersion 
of the reaction speed ( )xV t . Indeed, we have 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )( ) ( )
( ) ( )( )

( )( ) ( ) ( ) ( )( )2

0 0 0 0

0 ,

0 1 0

0 ,

0 1 .

kt kt
x

kt
x

kt
a

kt kt
x a

V t ka e k a e a a

kx t ka

V t ka e ka

ka e V t

V t k a e e V t

− −

−

−

− −

 = = − + 
= − +

= − − +

= = −

= − =

E

E

D D

 

Thus, if we have the estimate of the reaction speed constant 
k , then for any moment of time 0t ≥  we can calculate math-
ematical expectations (average values) and dispersions (devia-
tions from average values) ( )( )x tE , ( )( )x tD , ( )( )xV tE  and 

( )( )xV tD  of the values ( )x t  and ( )xV t  which are quite im-
portant numerical characteristics for experimenters. 

Let us now summarise the main results of this study: 
1. A multimolecular reaction of the form 

( )1
k

na a x t+ + →  for the reagents 1, , na a  can be 
described by a unimolecular reaction of the form 
( ) ( )ka t x t→  for one reagent ( )1min , , na a a=   

with the help of model (15). 
2. For any moment of time 0t ≥ , we have obtained the 

explicit analytic expressions of average values and dis-
persions: ( )( )x tE , ( )( )xV tE , ( )( )x tD  and ( )( )xV tD  
for the product ( )x t  and the reaction speed ( )xV t . 

Corollary 1. If the initial numbers of molecules (initial concentra-
tions) of the reagents 1, , na a  coincide ( ) ( )1 0 0na a= = , 
then, in this case too, the unimolecular reaction model has form 
(15). 

Corollary 2. It is easy to see that model (15) of a multimolecular 
chemical reaction can be successfully used also in the case when 
product molecules are formed as a result of collision of different 
numbers of molecules of the reagents participating in the chemi-
cal reaction. 
At last consider the graphs of values ( )( )x tE , ( )( )a tE ,  

( )( )xV tE  and ( )( )aV tE . We have 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example. Let us consider the following chemical reaction  

1 2 1 2a a x x+ → +  
where 

( )1 3 2 5

2

1 3

2 2 5

CH COOC H ,
NaOH (sodium basic),
CH COONa (sodiumacetate

ethylace

),
C H OH (alcohol

t t

.

a e

)

a
a
x
x

=

=
=

=

 

Denote the concentrations of the reagents 1a , 2a  and 
products 1x , 2x  at a moment of time 0t ≥  by ( )1a t , ( )2a t , 

( )1x t , ( )2x t . Denote also ( ) ( )( ) ( )1 2min ,a t a t a t= , 0t ≥ . 
Note that ( ) ( )1 2x t x t= ( )( )x t= , 0t ≥ . 

We have the following experimental dates 

TABLE 2 

 
Fig. 1. Graphs of a ( )( )x tE  and ( )( )a tE . 

 

 
Fig. 2. Graphs of a ( )( )xV tE  and ( )( )aV tE . 
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N  mint  ( )1 0a  ( )2 0a  ( )x t  ( )1a t  ( )2a t  

1 0 8 12 0 8 12 
2 10 8 12 3 5 9 

3 20 8 12 4 4 8 

4 30 8 12 5 3 7 
5 40 8 12 5 3 7 

6 50 8 12 6 2 6 

7 60 8 12 6 2 6 
8 100 8 12 7 1 5 

9 3000 8 12 8 0 4 

 
According to formula (9) we have 

TABLE 3 

time 10 20 30 40 50 60 100 3000 

k  0.05 0.04 0.03 0.03 0.03 0.02 0.02 0 

 

( )1 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0 0.03
8

k = + + + + + + + = . 

According to formulas (5), (6), (11), (12) we have 

( ) ( )
( ) ( )
( )
( ) ( )

0.03

0.03 0.03

0.03

0.03 0.03

8 1 ,

8 1 ,

0.24 ,

0.0009 1 .

t

t t

t
x

t t
x

Ex t e

Dx t e e

EV t e

DV t e e

−

−

−

− −

= −

= −

=

= −
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